Special Theory of Relativity (Einstein, 1905)

For B.Sc (H) Physics Students

Dr. Arvind Kumar
Department of Physics
Atma Ram Sanatan Dharma College, University of Delhi
Dhaula Kuan, New Delhi-110021(India)

Email: bhuarvind2512@gmail.com

Mob: +91-8826668810

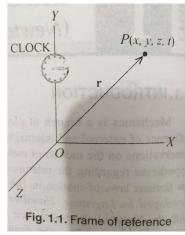
These slides cover only concept of Frame of Reference and Galilean Transformation

Note:

If anyone have any query and doubt contact me on my mail id or phone number. I will provide you all 4-5 slides per day regarding these course for your better understanding.

Reference Book: Classical Mechanics (J.C. Upadhyaya)

Introduction to Special Relativity (Robert Resnick)


Frame of Reference:

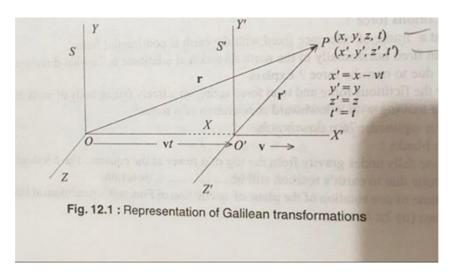
A frame of reference is a set of coordinates that can be used to determine positions and velocities of objects in that frame. There are two types of frames.

- (I) Inertial Frame of Reference (Follow law of Inertia, not accelerating relative to each other)
- (II) Non-Inertial Frame of Reference (Accelerating, rotating frame of reference etc.)

???Read Different Co-ordinate systems and their conversion

(Such as Spherical, cylindrical, etc.

Event:


An event is something that occurs at a localized region in space over a localized interval in time, or, in an idealized limit, at a point in space at an instant in time. Thus, the motion of a particle through space could be thought of as a continous series of events, while the collision of two particles would be an isolated event, and so on.

Newton's Law of Motion: (Do Yourself)

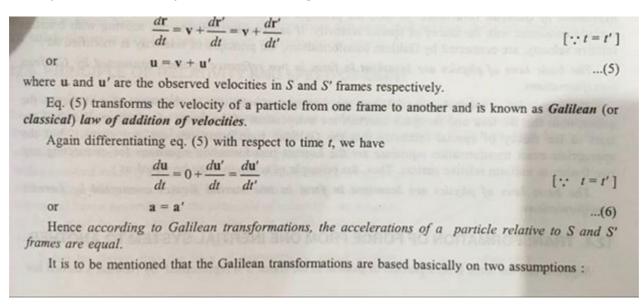
Q. Prove that all those frame of reference moving with constant velocity realtive to an inertial frame, are also inertial.

The Galilean Transformation

To derive these transformation equations, consider an inertial frame of reference S and a second reference frame S' moving with a velocity v_x relative to S.

At ant time position vectors of a particle in the two frames are related by the equation

r' = r - vt


In the component form, the co ordinates are related by the equation X' = x - vt; y'=y; z'=z

These are referred as Galilean transformation.

x=x'-vt'; y=y'; z=z'; t=t' are known as inverse Galilean Transformation.

Q.2 Show that length or distance between two points is invariant under Galilean Transformation?

Differentiating above equation with respect to time we get,

So, Galilean transformations are based on two assumptions;

- (I) There exists a universal time t which is the same in all reference system.
- (II) The distance between two points in various inertial systems is the same.