

ARSD College, University of Delhi

Model Course Handout/Lesson Plan

Course Nan						
Semester	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
I		Algebra	5	1	0	6
Teacher/Instructor(s)		Rajpal Rajbhar				
Session		2021-2022				

Course Objective: The primary objective of this course is to introduce the basic tools of theory of equations, complex numbers, number theory and matrices to understand their connection with the real-world problems. Perform matrix algebra with applications to computer graphics.

Course Learning Outcomes: This course will enable the students to employ De Moivre's theorem in a number of applications to solve numerical problems. Learn about equivalent classes and cardinality of a set. Use modular arithmetic and basic properties of congruences. Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix. Find eigen-values and corresponding eigenvectors for a square matrix.

Details of the Lab Course			
Sessio n	Name of Experiment		
1	Polynomials, The remainder and factor theorem, Synthetic division, Factored form of a polynomial.	4Hrs	
2	Fundamental theorem of algebra 2		
3	Relations between the roots and the coefficients of polynomial equations 2Hrs		
4	Theorems on imaginary, integral and rational roots 2		
5	Polar representation of complex numbers.		
6	De Moivre's theorem for integer and rational indices and their applications.	4Hrs	
7	The nth roots of unity.	3Hrs	
8	Equivalence relations	2Hrs	
9	Functions, Composition of functions, Invertibility and inverse of functions		
10	One-to-one correspondence and the cardinality of a set		
11	Well ordering principle		
12	The division algorithm in , Divisibility and the Euclidean algorithm, Modular arithmetic and basic properties of congruences		
13	Statements of the fundamental theorem of arithmetic and principle of mathematical induction		
14	Systems of linear equations, ,	3Hrs	

List of Experiments:

15	Row reduction and echelon forms, Vector equations	
16	The matrix equation $Ax = b$, Solution sets of linear systems, The inverse	
	of a matrix.	
17	Subspaces, ,	2Hrs
18	Linear independence, Basis and dimension	4Hrs
19	The rank of a matrix and applications.	4Hrs
20	Introduction to linear transformations	1Hrs
21	Matrix of a linear transformation	
22	Applications to computer graphics.	2Hrs
23	Eigenvalues and eigenvectors	
24	The characteristic equation and Cayley–Hamilton theorem	
	Total	70 hours

Suggested Books:

SI. No.	Name of Authors/Books/Publishers	Year of Publication/Repri nt
1.	Andreescu, Titu & Andrica Dorin. (2014). Complex umbers from A toZ. (2nd ed.). Birkhäuser	2014
2.	Dickson, Leonard Eugene (2009). First Course in the Theory of Equations.TheProjectGutenbergEBook(http://www.gutenberg.org/ebooks/29785)	2009
3.	Goodaire, Edgar G., & Parmenter, Michael M. (2005). Discrete Mathematics with Graph Theory (3rd ed.). Pearson Education Pvt. Ltd. Indian Reprint 2015.	2005
4.	Kolman, Bernard, & Hill, David R. (2001). Introductory Linear Algebra with Applications (7th ed.). Pearson Education, Delhi. First Indian Reprint 2003.	2001
5.	Lay, David C., Lay, Steven R., & McDonald, Judi J. (2016). Linear Algebra and its Applications (5th ed.). Pearson Education	2016

Evaluation Scheme:

No.	Component	Duration	Marks
	Internal Assessment		
4	Quiz/Viva		
1.	Observation & Record		25
	Attendance		
	Model Exam		
2.	End Semester Examination	3 hr	75

Rajpal Rajbhar Assistant Professor Mathematics Department