- 3. Preparation of inorganic pharmaceuticals- Boric acid Potash alum
- 4. Determination of sugar content in the given solution.
- 5. Estimation of zinc and calcium in a given solution.
- 6. Qualitative analysis of carbohydrates (Glucose, Fructose, Lactose, Maltose, Sucrose).
- 7. Qualitative tests for Proteins
- 8. Qualitative analysis of vitamin C.
- 9. Isolation of paracetamol (API) from a commercial tablet
- 10. Isolation of aspirin (API) from tablet and recording of melting point (synthesis needs discussion)

References:

Theory:

- 1. Patrick, G. L. (2001) Introduction to Medicinal Chemistry, Oxford University Press.
- 2. Lemke, T. L. & William, D. A. (2002), **Foye's Principles of Medicinal Chemistry**, 5th Ed., USA,
- 3. Singh H.; Kapoor V.K. (1996), **Medicinal and Pharmaceutical Chemistry**, Vallabh Prakashan.
- 4. Chatwal, G.R. (2010), **Pharmaceutical chemistry**, inorganic (vol. 1), Himalayan publishing house
- 5. <u>https://go.drugbank.com./</u>

Practicals:

- 1. Jeffery, G.H., Bassett, J., Mendham, J., Denney, R.C. (1989), Vogel's Textbook of Quantitative Chemical Analysis, John Wiley and Sons.
- 2. Ahluwalia, V.K., Dhingra, S. (2004), **Comprehensive Practical Organic Chemistry: Qualitative Analysis**, University Press.
- 3. Munwar, S., Ammaji, S.(2019), **Comprehensive Practical Manual of Pharmaceutical Chemistry**, Educreation Publishing.
- 4. Mondal, P., Mondal, S.(2019), Handbook of Practical Pharmaceutical Organic, Inorganic and Medicinal chemistry, Educreation Publishing.

GE 15: Chemistry and Society

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Coursetitle	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
Code		Lecture	Tutorial	Practical/ Practice		
Chemistry and Society (GE-15)	4	2		2		

Learning Objectives

The Learning Objectives of this course are as follows:

- To expand the literacy of chemistry, and increase general awareness, background of chemistry and its importance among the non-chemistry student even arts as well as commerce.
- To make a common student understand the importance and role of chemistry in development of civilization, societal issues related to chemistry and their expected solutions.

Learning Outcomes

At the end of this course the student will be able to:

- Increase the literacy of chemistry even in non-science students
- Understand the basic concept, principle and importance of chemistry
- Realize the importance of chemistry in daily life and future requirement

SYLLABUS OF GE-15

Theory:

Unit 1: Basics of chemistry

Periodic table, Atom and molecules, chemical bonding, properties and chemical reactions with simple examples and illustration.

Unit 2: Chemistry in Heritage

Extraction and uses of metals like iron and stone in ancient times, metals in ornaments, medicines, weapons and chemistry for preservatives, basics of preservation and few examples of preservatives.

Unit 3: Chemistry in Life

Edible and non- edible molecules, biochemistry of foods and medicine with examples: Aspirin, Paracetamol. Ibuprofen and Penicillin, Cephalosporin, Chemistry for industry: Artificial sweeteners, Soaps and detergents and cosmetics, Polymer and Plastics: Uses and environmental issues.

Unit 4: Chemical pollution and Toxicity

Chemical source of water, air and soil pollution, biomagnification and metal toxicity with example and illustrations. monitoring of air pollution.

Unit 5: Testing of chemicals

Flame test, solubility test, qualitative and quantitative identification of ions in natural samples like metal copper, iron and chromium ores and adulterant in foods.

Unit 6: Future of chemistry

Basics of green chemistry, Reuse and recycling of by-products, zero waste chemistry and Alternate fuel and energy providing chemicals: biodiesel, natural gas and hydrogen.

(8 Hours)

(10 Hours)

(2 Hours)

(2 Hours)

(4 Hours)

(4 Hours)

Practicals/Hands-on Training:

(60 Hours)

(Laboratory periods: 60)

- 1. Determine the calcium and magnesium contents in water samples using EDTA methods.
- 2. Determine the organic contents and pH of soil sample.
- 3. Estimate the food adulterants in edible items
- 4. Quantify the presence metals by flame test method
- 5. Demonstrate the conversion of PET into bottle into value added products.
- 6. Determine the quantitative presence of heavy metals like copper and chromium in natural sample like ore.
- 7. Demonstrate the exothermic and endothermic reaction in laboratory
- 8. Preparation aspirin and paracetamol as well as identify.
- 9. Compare the fuel efficiency of biodiesel and petrol.
- 10. Preparation of representative compound using microwave
- 11. Demonstrate the biodegradability of natural and synthetic plastics.
- 12. Demonstrate the protection of rusting of iron after surface spray coating.
- 13. Estimate the protein contents in edible samples using chemical methods.
- 14. Small working project on heritage chemistry like bio compatibility of metals and medicinal importance of metals like iron, gold and silver.

References:

- 1. Lee, J. D., Concise Inorganic Chemistry, Wiley India Pvt. Ltd.
- 2. Sharma, B. K., Industrial chemistry, Goel Publishing House, India
- 3. Christian, Gary D., Dasgupta, Purnendu K., Schug, Kevin A., Analytical chemistry, Wiley
- 4. V. Subramanian, A text book of Environmental chemistry, Wiley

GE 19: Radio-chemistry in Energy, Medicine and Environment

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre- requisite of
		Lecture	Tutorial	Practical/ Practice		the course
Radio- chemistry in Energy, Medicine and Environment (GE-19)	4	3		1		