

ARSD College, University of Delhi

Model Course Handout/Lesson Plan

Course Name:		B.Sc. (H) Mathematics				
Semester	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
II	DSC-4	Linear Algebra	3	1	0	4
Teacher/Instructor(s)		DR. MOHAMMAD SALMAN				
Session		2022-23				

Course Objectives:

The objective of the course is to introduce the concept of vectors in \mathbb{R}^n . The concepts of linear independence and dependence, rank and linear transformations has been explained through matrices. Various applications of vectors in computer graphics and movements in a plane has also been introduced.

Course Learning Outcomes: This course will enable the students to:

- **1.** Visualize the space Rⁿ in terms of vectors and the interrelation of vectors with matrices.
- **2.** Familiarize with basic concepts in vector spaces, linear independence and span of vectors over a field.
- **3.** Learn about the concept of basis and dimension of a vector space.
- **4.** Basic concepts of linear transformations, dimension theorem, matrix representation of a linear transformation with application to computer graphics.

Unit No.	Learning Objective	Lecture No.	Topics to be Covered	
	Matrices and System of Linear Equations	1-2	Fundamental operation with vectors in Euclidean space R ⁿ	
		3	Linear combinations of vectors	
		4-5	Dot product and their properties	
		6	Cauchy-Schwarz inequality, Triangle inequality	
		7-8	Solving system of linear equations using Gaussian	
			elimination	
Unit 1		9	Gauss-Jordan row reduction	
		10	Reduced row echelon form	
		11-12	Equivalent systems, Rank and row space of a matrix	
		13	Eigenvalues, Eigenvectors	
		14	Eigenspace	
		15-16	Diagonalization	
		17	Characteristic polynomial of a matrix	
		18	Cayley-Hamilton theorem	
Linit 2	Introduction to	19-21	Vector spaces	
Unit 2	Vector Spaces	22-23	Subspaces	

Lesson Plan:

		24	Algebra of subspaces	
		25	Linear combination of vectors	
		26	Linear span	
		27	Linear independence	
		28-29	Bases and dimension	
		30	Dimension of subspaces	
	Linear Transformations	31	Linear transformations	
		32	Null space, Range	
		33-34	Rank and nullity of a linear transformation	
		35	Matrix representation of a linear transformation	
		36	Algebra of linear transformations	
Unit 3		37-38	Invertibility and isomorphisms	
		39	Application: Computer graphics – Fundamental	
			movements in a plane	
		40	Homogenous coordinates	
		41	Composition of movements	
		42	Revision and Test	

Evaluation Scheme:

S. No.	Component	Duration	Marks
1	Internal Assessment		
	• Quiz		24
	Class Test		24
	Assignment		
2	End Semester Examination	3 hrs	90
	Continuous Assessment		
	Literature Review		
	Book Review		
	Movie Review		
	 Project Activity (Group) 		
	Research Cum Presentation		
3	 Creative Writing/Paper Writing 		35
	Group Discussion		
	Problem Solving Exercises		
	• Any creative Production (May be Done in a Group)		
	Innovative Project		
	Any Other Scholastic Work Related to Application		
	of Conceptual Understanding of the Subject		
4	Tutorial Attendance		5
5	Class Attendance		6

Details of the Course:

Unit	Content	Contact Hours
	Matrices and System of Linear Equations	
1	Fundamental operations with vectors in Euclidean space $\mathbb{R}n$, Linear combinations	18
	of vectors, Dot product and their properties, Cauchy-Schwarz inequality, Triangle	

inequality, Solving linear systems using Gaussian elimination, Gauss-Jordan row reduction, Reduced row echelon form, Equivalent systems, Rank and row space,		
Eigenvalues, Eigenvectors, Eigenspace, Diagonalization, Characteristic polynomial		
	of a matrix, Cayley-Hamilton theorem	
	Introduction to Vector Spaces	
2	Vector spaces, Subspaces, Algebra of subspaces, Linear combination of vectors,	12
	Linear span, Linear independence, Bases and dimension, Dimension of subspaces.	
	Linear Transformations	
	Linear transformations, Null space, Range, Rank and nullity of a linear	
3	transformation, Matrix representation of a linear transformation, Algebra of	12
	linear transformations, Invertibility and isomorphisms; Application: Computer	12
	Graphics-Fundamental movements in a plane, homogenous coordinates,	
	composition of movements.	
	Total	42

Suggested Books:

S. No.	Name of Authors/Books/Publishers	Year of Publication/Reprint
1	Andrilli, S., & Hecker, D. (2016). Elementary Linear Algebra (5th ed.). Elsevier India	2016
2	Friedberg, Stephen H., Insel, Arnold J., & Spence, Lawrence E. (2003). Linear Algebra (4th ed.). Prentice-Hall of India Pvt. Ltd. New Delhi	2003
3	Lay, David C., Lay, Steven R., & McDonald, Judi J. (2016). Linear Algebra and its Applications (5th ed.). Pearson Education	2016
4	Kolman, Bernard, & Hill, David R. (2001). Introductory Linear Algebra with Applications (7th ed.). Pearson Education, Delhi. First Indian Reprint 2003.	2001

Mode of Evaluation:

Internal Assessment/End Semester Exam